7 Full Stack Assignment for Internship Hiring

Task Title: Build a Blog Editor Page with Backend & Auto-Save Draft Feature

@ Objective:

Design and develop a full-stack application that allows users to write, edit, save, and publish
blogs with an auto-save draft feature.

This task will help us evaluate your skills in frontend development, backend API design,
database integration, and system thinking.

= Requirements:

Frontend:

e Use React.js, Next.js, Angular, or Vue.js (Your Choice).
o Create a Blog Editor Page:
o Title field (text input)
o Content field (rich text editor or textarea)
o Tags field (optional, comma-separated)
e Functionality:
o Save as Draft button
Publish button
Auto-Save Draft (every 30 seconds or when user stops typing for 5 seconds)
Display list of All Blogs (published & drafts separately)
Edit and update existing drafts/posts

O O O O

Backend:

e Use Node.js with Express.js, Django, Flask, or any other framework of your choice.
e Database: MongoDB, PostgreSQL, or any SQL/NoSQL database.
e Define a Blog schema/model with fields:
o id
title
content
tags
status (draft Or published)
created at
updated at

e API Endpoints (see below)

O O O O O O

" Sample API Specifications:

Method Endpoint Description

POST /api/blogs/save-draft Save or update a draft
POST /api/blogs/publish Save and publish an article
GET /api/blogs Retrieve all blogs

GET /api/blogs/:id Retrieve a blog by ID

& Bonus (Optional but preferred):

e Auto-save after 5 seconds of inactivity using debouncing.
e Notify the user visually when the article is auto-saved (toast, message).
e Use JWT token or session-based authentication (bonus for protected APIs).

System Architecture Diagram:

[User (Browser)]

|
\Y

[Frontend (React/Angular/Vue)]

|
REST API Calls (HTTP)

|
\Y

[Backend (Express/Django/Flask API Server)]
|
Y

[Database (MongoDB/PostgreSQL)]

Evaluation Criteria:

Skillset Evaluation Area
Frontend U, Form validation, State management, Auto-save UX
Backend Clean API design, Data validation, Error handling
Database Schema design, Efficiency
System thinking Modular code, Clean architecture, Clear separation of concerns

Bonus points (optional) Auto-save optimizations, Notifications, Authentication

& Deliverables:

e GitHub Repo with clear README (Setup instructions + tech stack)
e Working Demo (optional) or video walk-through
e Clean code and comments.

